# (Z)-1-Ethyl-3-(4-chlorobenzylidene)-1,2,3,5tetrahydroimidazo[2,1-*b*]quinazoline-2,5dione

JANINA KAROLAK-WOJCIECHOWSKA

Institute of General and Ecological Chemistry, Technical University, 90-924 Łódź, Poland

KATARZYNA KIEĆ-KONONOWICZ

Institute of Pharmaceutical Chemistry, Collegium Medicum, Jagiellonian University, 31-065 Kraków, Poland

(Received 15 November 1994; accepted 24 February 1995)

#### Abstract

The central part of the title molecule,  $C_{19}H_{14}ClN_3O_2$ , comprises three N atoms bonded to  $C2(sp^2)$ . The bond lengths of C2 with N1 and N3  $(sp^2 \text{ N atoms})$  are comparable [1.371 (5) and 1.392 (6) Å, respectively], while the C2—N4(*sp*) bond is shorter [1.285 (5) Å]. The main skeleton of the molecule (three condensed  $\pi$ electron rings inclined slightly towards one another) and the phenyl ring have a Z configuration with torsion angle N1—C5—C6—C16 = -8.5 (9)°. Thus, as a result of steric hindrance, the imidazo–quinazolinedione skeleton and the phenyl ring are not coplanar, and form a dihedral angle of 48.1 (1)°.

### Comment

In our previous paper, we briefly summarized our structural studies on different hydantoin derivatives with varying biological activities (Karolak-Wojciechowska & Kieć-Kononowicz, 1994). As an extension of our search for new anticonvulsants, we studied arylideneimidazoquinazolinedione derivatives, the molecules being 'enriched' by attaching an additional aromatic ring to the rigid part of the annelated skeleton. The general aim of our project is structure-activity correlations. Since these correlations can be based on structural and electronic parameters derived from a geometrical description of the molecule (Konschin, Tylli, Gynther & Rouvinen, 1989; Diaz-Arauzo, Koehler, Hagen & Cook, 1991), the three-dimensional structures and



conformations of all the investigated molecules have to be determined. This prompted us to solve the structure of the title compound, (I), as a crucial material for the molecular modelling of the remaining seven molcules of this class. These data were used for calculation and comparison of the electrostatic potential distribution around the active and inactive molecules (Karolak-Wojciechowska, Kwiatkowski & Kieć-Kononowicz, 1995). The conformation of the molecule together with the atomic numbering is depicted in Fig. 1.



Fig. 1. Molecular structure and atomic numbering showing 50% probability displacement ellipsoids.

#### Experimental

The preparation of the title compound was performed by Kieć-Kononowicz (1993). The crystals were grown by slow evaporation of a DMF solution.

Crystal data

| $C_{19}H_{14}ClN_3O_2$          | Cu $K\alpha$ radiation         |
|---------------------------------|--------------------------------|
| $M_r = 351.8$                   | $\lambda = 1.54184 \text{ Å}$  |
| Monoclinic                      | Cell parameters from 25        |
| $P2_1/c$                        | reflections                    |
| a = 11.918 (4)  Å               | $\theta = 10-60^{\circ}$       |
| b = 12.296(3) Å                 | $\mu = 2.22 \text{ mm}^{-1}$   |
| c = 11.193(5) Å                 | T = 293  K                     |
| $\beta = 90.65(3)^{\circ}$      | Needle                         |
| $V = 1640.1(5) \text{ Å}^3$     | $0.4 \times 0.2 \times 0.2$ mm |
| Z = 4                           | Light yellow                   |
| $D_x = 1.425 \text{ Mg m}^{-3}$ |                                |

Data collection

Kuma KM-4 diffractometer  $\theta_{\rm max} = 65^{\circ}$  $\omega/2\theta$  scans  $h = 0 \rightarrow 15$ Absorption correction:  $k = 0 \rightarrow 13$  $l = -14 \rightarrow 14$ none 3671 measured reflections 2 standard reflections 2742 independent reflections monitored every 50 1893 observed reflections reflections  $[F > 4\sigma(F)]$ intensity decay: 10%  $R_{int} = 0.038$ 

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

### $C_{19}H_{14}CIN_{3}O_{2}$

1834

Cl

01

02

NI

N3

C2 C4 C5 C6 C7 C8 C9

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

1.3301 (4)

1.2415 (4)

1.3006 (4)

1.3261 (5)

0.8146 (3) 0.7059 (4)

0.6172 (4)

0.6375 (4)

0.7438 (4)

0.8325 (4)

| Refinement                         |                                                            |
|------------------------------------|------------------------------------------------------------|
| Refinement on F                    | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$  |
| R = 0.072                          | $\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$ |
| wR = 0.067                         | Extinction correction:                                     |
| S = 4.84                           | $F_c^* = F_c(1 - gF_c^2/\sin\omega)$                       |
| 1893 reflections                   | Extinction coefficient:                                    |
| 227 parameters                     | g = 0.0662                                                 |
| $w = 1/\sigma^2(F)$                | Atomic scattering factors                                  |
| $(\Delta/\sigma)_{\rm max} = 0.01$ | from SHELXTL/PC                                            |
| · / ······                         | (Sheldrick, 1990)                                          |

| Table | 1. | Fractional   | atomic  | coordinates  | and    | equivalent     |
|-------|----|--------------|---------|--------------|--------|----------------|
|       |    | isotropic di | splacem | ent paramete | ers (Å | <sup>2</sup> ) |

|     | $U_{eq}$ = | = (1/3) $\sum_i \sum_j U_{ij}$ | $a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$ |              |
|-----|------------|--------------------------------|----------------------------------------|--------------|
|     | x          | y                              | z                                      | $U_{\rm eq}$ |
| CI  | 0.5265(1)  | 0.6431 (2)                     | 0.0978 (1)                             | 0.092 (1)    |
| 01  | 1.0741 (3) | 0.9032 (3)                     | -0.3418 (3)                            | 0.071 (1)    |
| 02  | 0.9412 (3) | 0.8881 (3)                     | 0.1057 (3)                             | 0.060(1)     |
| NI  | 1.0770 (3) | 0.8639 (3)                     | -0.0335 (3)                            | 0.048 (1)    |
| N3  | 1.1966 (3) | 0.8946 (3)                     | -0.1826 (3)                            | 0.051 (1)    |
| N4  | 1,2729 (3) | 0.8834 (3)                     | 0.0117 (3)                             | 0.055 (1)    |
| C2  | 1.1879 (3) | 0.8794 (4)                     | -0.0598 (4)                            | 0.049 (1)    |
| Č4  | 1.0923 (4) | 0.8906 (4)                     | -0.2358 (4)                            | 0.055 (1)    |
| C5  | 1.0112 (4) | 0.8652 (4)                     | -0.1406 (4)                            | 0.050(1)     |
| C6  | 0.9055 (4) | 0.8432 (4)                     | -0.1649 (4)                            | 0.052 (1)    |
| C7  | 1.0393 (4) | 0.8782 (4)                     | 0.0848 (4)                             | 0.047 (1)    |
| C8  | 1.1323 (4) | 0.8783 (4)                     | 0.1702 (4)                             | 0.050(1)     |
| C9  | 1.1072 (4) | 0.8823 (4)                     | 0.2927 (4)                             | 0.061 (1)    |
| C10 | 1.1937 (5) | 0.8818 (4)                     | 0.3750 (4)                             | 0.070 (2)    |
| CII | 1.3026 (5) | 0.8763 (5)                     | 0.3378 (5)                             | 0.076 (2)    |
| C12 | 1.3301 (4) | 0.8752 (5)                     | 0.2183 (4)                             | 0.067(1)     |

0.8752 (5)

0.8763 (4)

0.9200 (5)

1.0405 (6)

0.7961 (4)

0.8300 (4)

0.7848 (5)

0.7008 (5)

0.6644 (4)

0.7112 (4)

0.1331 (4)

-0.2425 (4)

-0.2337(5)

-0.0952 (4)

-0.1175(4)

-0.0558(4)

0.0228 (4)

0.0435 (4)

-0.0145(4)

| Table 2. Selected geometric parameters (A, | - |  |
|--------------------------------------------|---|--|
|--------------------------------------------|---|--|

| 01—C4        | 1.214 (6) | C4C5     | 1.480(7)  |
|--------------|-----------|----------|-----------|
| 02C7         | 1.201 (6) | C5—C6    | 1.314 (7) |
| N1-C2        | 1.371 (5) | C7—C8    | 1.455 (7) |
| N1-C5        | 1.425 (6) | C8—C9    | 1.408 (6) |
| N1-C7        | 1.414 (6) | C8-C13   | 1.371 (7) |
| N3-C2        | 1.392 (6) | C9C10    | 1.375 (7) |
| N3-C4        | 1.373 (6) | C10C11   | 1.369 (8) |
| N3-C14       | 1.450 (6) | C11—C12  | 1.381 (7) |
| N4-C2        | 1.285 (5) | C12—C13  | 1.415 (7) |
| N4-C13       | 1.416 (6) |          |           |
| C2-N1-C5     | 109.9 (4) | N1-C2-N3 | 108.3 (4) |
| C2-N1-C7     | 120.1 (4) | N1-C2-N4 | 128.8 (4) |
| C5-N1-C7     | 127.5 (4) | N3-C2-N4 | 122.9 (4) |
| C2-N4-C13    | 112.4 (4) |          |           |
| N1-C5-C6-C16 | -8.5 (9)  |          |           |

## Table 3. Dihedral angles between mean planes (°)

Plane A: N1, C2, N3, C4, C5. Plane B: N1, C2, N4, C13, C8, C7. Plane C: C8, C9, C10, C11, C12, C13.

| A/B | 9.8 (2)  |
|-----|----------|
| A/C | 12.1 (2) |
| B/C | 4.5 (2)  |

The structure was refined by full-matrix least squares. The positions of all the H atoms were found from a  $\Delta \rho$  map and

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

refined using a riding model with fixed isotropic displacement parameters  $(1.5U_{eq}$  of the parent atom).

Structure solution: SHELXTL/PC (Sheldrick, 1990). Structure refinement: SHELXTL/PC. Molecular graphics: SHELX-TL/PC. Preparation of material for publication: SHELXTL/PC.

The crystallographic studies were supported by grant No. 3 0302 91 01 from the Polish State Committee for Scientific Research.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: KA1109). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

0.054 (1)

0.065 (2)

0.091 (2)

0.048(1)

0.058(1)

0.063(1)

0.057(1)

0.059(1)

0.054 (1)

- Diaz-Arauzo, H., Koehler, K. F., Hagen, T. J. & Cook, J. M. (1991). Life Sci. 49, 207-216.
- Karolak-Wojciechowska, J. & Kieć-Kononowicz, K. (1994). Acta Cryst. C50, 300-302.
- Karolak-Wojciechowska, J., Kwiatkowski, W. & Kieć-Kononowicz, K. (1995). Pharmacie, 50, 114-117.
- Kieć-Kononowicz, K. (1993). Unpublished results.
- Konschin, H., Tylli, H., Gynther, J. & Rouvinen, J. (1989). Int. J. Quantum Chem. Quantum Biol. Symp. 16, 245-259.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 1834-1836

# 5-(2-Chlorobenzyl)-6-methyl-3(2H)pyridazinone

#### STEPHANE MOREAU

Groupe de Recherche en Pharmacochimie, Laboratoire de Chimie Thérapeutique, UFR de Pharmacie, BP 38, 63001 Clermont-Ferrand CEDEX, France

#### JACQUES METIN

Groupe de Recherche en Pharmacochimie, Laboratoire de Chimie Physique et Minérale, UFR de Pharmacie, BP38, 63001 Clermont-Ferrand CEDEX, France

PASCAL COUDERT AND JACQUES COUQUELET

Groupe de Recherche en Pharmacochimie, Laboratoire de Chimie Thérapeutique, UFR de Pharmacie, BP38, 63001 Clermont-Ferrand CEDEX, France

(Received 22 December 1994; accepted 23 February 1995)

#### Abstract

The crystal and molecular structure of the title compound, C<sub>12</sub>H<sub>11</sub>ClN<sub>2</sub>O, has been determined as part of an investigation into quantitative structure-activity